Study Guide

CHAPTER 10

Section 2: Mendelian Genetics

In your textbook, read about how genetics began and the inheritance of traits.

Write the term or phrase that best completes each statement. Use these choices:

cross-pollination recessive

from generation to generation.

dominant self-fertilization

gametes trait

inherited

- **1.** Mendel was the first person to succeed in predicting how traits are
- 2. In peas, both male and female sex cells, which are called , are in the same flower.
- **3.** ______ occurs when a male gamete fuses with a female gamete in the same flower.
- **4.** Mendel used the technique called ______ to breed one plant with another.
- **5.** Mendel studied only one _____ at a time and analyzed his data mathematically.
- **6.** In individuals with a heterozygous genotype, the ______ allele of a trait is hidden by the expression of the other phenotype.
- **7.** In individuals with a heterozygous genotype, the ______ allele of a trait is visible in the phenotype.

In your textbook, read about Punnett squares.

Complete the Punnett square by filling in the missing information.

A student crossed true-breeding pea plants that had purple flowers (P) with true-breeding pea plants that had white flowers (p). All of the offspring had purple flowers. Then the student crossed two plants from the F₁ generation. The student's Punnett square is shown at right. What information should the student put in each blank? Remember, the dominant allele is always written first.

gametes 8	·	_ <i>p</i>
	10.	11.
9		

p

Possible

12. Pp

Study Guide, Section 2: Mendelian Genetics continued

In your textbook, read about the inheritance of traits and Punnett squares.

Use each of the terms below only once to complete the passage.

dihybrid	gene	genotypes	monohybrid	phenotypic ratio			
A cross between plan	ts that invol	ves one character	istic is called a (13)				
cross. Mendel also pe	erformed (14	l)	crosses,	which involve two			
(15)		pairs, w	pairs, with pea plants. When he crossed two pea plants that				
were heterozygous fo	r both seed	shape (Rr) and for	r seed color (Yy), he	observed a 9:3:3:1			
(16)		among t	among the seeds of the offspring. A Punnett square shows				
the possible phenotyp	es and (17)		of the of	fspring.			

Complete the Punnett square by filling in the missing information.

Possible gametes	RY	Ry	rY	ry
RY	RRYY round, yellow	18.	19.	RrYy round, yellow
Ry	20.	21.	22.	23.
rY	24.	RrYy round, yellow	25.	26.
ry	27.	28.	29.	30.

In your textbook, read about probability.

Refer to the Punnett square above. Respond to the following statement.

31. Find the probability that a wrinkled, green seed will result.